Bild 417. Sockelschaltung

Anwendung: Breitband- und aperiodische Wellenbandverstärkung (Fernsehempfänger und Antennenverstärker), Kurzwellen-Empfangs- und Sendeverstärkung, Pentodenmischung (additiv und multiplikativ), Gittergleichrichtung, NF-Spannungs- und Leistungsverstärkung in Tetroden- bzw. Trioden- und Gegentaktschaltung.

Eigenschaften: Kleine Abmessungen, vorzügliche Verstärkung infolge hoher Steilheit und besonders geringen Rauschens auch bei Kurzweilen, sowohl als Pentode als auch als Tetrode oder Triode verwendbar.

Aufbau: Indirekt geheizt, System in waagerechter Anordnung, sämtliche Elektroden einzeln an Sockelstifte geführt, 8poliger Stiftsockel mit Führungsstift, Stahlkolben.

Hinweise für die Verwendung: Die EF 14 ist eine für Fernseh- bzw. Antennenverstärker entwickelte, aber darüber hinaus universell verwendbare HF-Pentode mit getrennt herausgeführtem Bremsgitter, das eine Verwendung in Tetrodenschaltung ermöglicht (Spezial-Tetrodenschaltung mit Kennlinienlinearisierung). Mit sehr hoher Steilheit (7-10 mA/V), geringem Anodenstrombedarf (12-20 mA) und gutem S.C-Verhältnis besitzt die Röhre außerordentlich geringe Verzerrungseigenschaften, so daß sie besonders als Spezialröhre für Breitbandverstärkung geeignet ist.

l. Grenzwerte		
Ua	300 V	
Ug2	200 V	
l - ¹a	5 W	
Ng2	0,7 W	
1 k	3 0 mA	
Rg1	0,5 мΩ	
Ufk	100 V	
R _{fk}	20000 Ω	
2. Betriebswerte		
G3 an K (Brei		
bei Ua	250 V	
U _{g2}	200 V	
Ug3	0 V	
l (gl	-4,5 V	
l a	12 mA	
I ggz	1,7 mA	
S R;	7 mA/V 200 kΩ	
Raeq	200 kΩ 1000 Ω	
R _k	300 Ω	
G 3 an A (Antennenverst.)		
bei U _a	250 V	
Ug2	200 V	
l _{g1} l _a + I _{g3}	-4,5 V 18 mA	
l _{g2}	1,6 mA	
s s	9,5 mA/V	
R _i	30 kΩ	
Raeq	600 Ω	
R _k	220 Ω	
3. Kapazitäten max.		
Cag	< 0,01 pF	
C _e C _a	10 pF	
L'a	8,8 pF	